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The frequency spectrum of the finite temperature correction to the Casimir force can be determined by use
of the Lifshitz formalism for metallic plates of finite conductivity. We show that the correction for the TE
electromagnetic modes is dominated by frequencies so low that the plates cannot be modeled as ideal dielec-
trics. We also address issues relating to the behavior of electromagnetic fields at the surfaces and within
metallic conductors, and calculate the surface modes using appropriate low-frequency metallic boundary con-
ditions. Our result brings the thermal correction into agreement with experimental results that were previously
obtained. We suggest a series of measurements that will test the veracity of our analysis.
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I. INTRODUCTION

A recent paper[1], in which finite conductivity and tem-
perature corrections to the Casimir force between metal
plates are simulatenously considered, suggests a large ther-
mal correction to the force at distances greater than about 1
µm. This correction deviates significantly from experimental
results[2,3] and previous theoretical work, and has attracted
considerable interest. The principal conclusion in Ref.[1]
leading to this discrepancy is that the TE electromagnetic
mode (E parallel to the surface) does not contribute to the
force at finite temperature. Arguments against the analysis
given in Ref. [1] have been numerous[4–7] but the argu-
ments have not been universally accepted[8,9].

A careful numerical analysis of the problem leads us and
others to conclude that the results presented in Ref.[1] are
mathematically correct. As we show here, this analysis does
not accurately represent the experimental arrangement used
in Ref. [2]. The aspect of the problem that has not been
considered in detail is the appropriateness of a dielectric
model of the metallic plates at low frequencies, which, as we
will show, is most relevant for the thermal correction. The
first purpose of this Brief Report is to expand on our previ-
ous work [10] and to show that the experimental result[2]
can be fully explained by this application.

The second purpose of this Brief Report is to contrast the
points of view put forward in Refs.[1,11]. Use of the surface
impedance to calculate the waveguide modes, as was done in
Ref. [11] allows description of the Casimir force by a single
analytic function in the complexv plane[12]. Treating met-
als as dielectrics, as was done in Ref.[1], leads to the re-
quirement that different boundary conditions must be used
when the skin depth of the electromagnetic field is smaller
than the electron mean free path in the metal. Therefore, with
the dielectric treatment, the Casimir force cannot be de-
scribed by a single analytic function so the techniques used
in Ref. [1] are not applicable to the problem.

Finally, we suggest that the analysis in Ref.[1] is appli-
cable to insulating dielectrics, and possibly to materials such
as intrinsic or lightly doped Ge or Si where the skin depth is
longer than the electron mean free path. Measurements with
a dielectric such as diamond would provide an excellent test
of the theory and allow the possibility to discharge the sur-

face by use of ultraviolet light. The ultimate purposes of this
note are to call for further theoretical studies and experimen-
tal measurements as suggested here.

II. SPECTRUM OF THE TE MODE THERMAL
CORRECTION OF THE CASIMIR FORCE

Following Ford[13], the spectrum of the Casimir force is
given by Eqs.(2.3) and(2.4) of Lifshitz’ seminal paper[14].
We note that
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and we only include the second term on the right-hand side
in the determination of the spectrum of the thermal correc-
tion. From Eq.(2.4) of Ref. [14], the spectrum of the TE
mode excitation between parallel plates can be described by
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wherea is the plate separation, and we have assumed that the
plates are made of the same material with vacuum between
them. The integration pathC can be separated intoC1 for
p=1 to 0, which describes the effect of plane waves, andC2
with pure imaginary valuesp= i0 to i` for exponentially
damped(evanescent) waves.

In anticipation that the effect is a low-frequency phenom-
enon, we use the parameters for Au in Ref.[1] for Im e=e2
and employ the Kramers-Kronig relations to determine
Ree=e1. We find for frequenciesv,1014 s−1 that, to good
approximation,

e1 =
− 1.483 104

1 + sv/v0d2 ; e2 =
1.83 1018

vf1 + sv/v0d2g
s4d

with v0=3.331013 s−1.
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In Ref. [1], a net deviation from the zero-temperature
value of the Casimir force is predicted to be about 25% for a
plate separation of 1µm at 300 K. The experimental results
reported in Ref.[2] had their greatest sensitivity around 1
µm, and disagree significantly with the results in Ref.[1]. As
a comparison, we numerically integrate Eq.(2) for a
=1 mm andT=300 K, using Eq.(4) for the permittivity. The
results are shown in Fig. 1, where we have separated the
results from the two integration paths. In Fig. 1(a) it can be
seen that there is no significant deviation from the perfectly
conducting case. On the other hand, the contribution from
evanescent waves, shown in Fig. 1(b), is large and the inte-
grated value is in good agreement with the result given in
Ref. [1].

We see immediately that the main contributions of the
TE-mode finite conductivity correction are aroundv
=1010–1013 s−1. This behavior is due to an approximately
quadratic increase withv of the C2 integral and a suppres-
sion beginning atv=kT/"=431013 s−1 due togsvd. This is
a low-frequency range and we can question certain assump-
tions in Ref.[1] and in the Lifshitz calculation, among oth-
ers, in regard to theoretical predictions relevant to the experi-
mental arrangement in Ref.[2].

III. LOW-FREQUENCY LIMIT AND FIELD BEHAVIOR IN
METALLIC MATERIALS

When the depth of penetration of the electromagnetic field
into a metal,

d = c/Î2pmsv, s5d

wheres is the conductivity andm is the permeability(for Au
and Cu,s<331017 s−1, m=1), becomes of the same order
as the mean free path of the conduction electrons, it is no
longer possible to describe the field in terms of a dielectric
permeability[12,15]. This occurs for optical frequenciesv
<531013 s−1 for metals such as Au and Cu where the mean
free path, at 300 K, is about 3310−6 cm (Ref. [16], p. 259).
At frequencies above 1014 s−1 the permeability description
again becomes valid because on absorbing a photon, a con-
duction electron acquires a large kinetic energy and has a
shortened mean free path. However, in the interaction of a
field with a material surface,E andH can always be related
linearly through the surface impedance(which relates the
electric field at the surface to a surface current and hence a
magnetic field); this approach has been used in calculation of
the Casimir force[11]. A related correction arises from the
the plasmon interaction with the surface which becomes sig-
nificant near the plasma frequency of the metal, and has been
estimated as nearly 10%[17] for sub-µm plate separations.

The proper boundary conditions for a conducting plane
have been discussed by Boyer[18]. He points out that when
(using here the notation of Ref.[1]) v!h2r /4p, wherer is
the resistivity andh is the dissipation, the usual dielectric
boundary conditions are not applicable. For Au, using the
parameters in Ref.[1], this limit is met forv!431014 s−1.
This corresponds to an optical wavelength of 5µm, which
implies that for plate separations significantly larger than
this, and of course forv→0, the plates must be treated as
good conductors.

The boundary conditions for a conducting surface are dis-
cussed in Ref.[19] (Sec. 8.1). At low frequencies(e.g.,
where the displacement current can be neglected), a tangen-
tial electric field at the surface of a conductor will induce a
currentj i=sEi, wheres is the conductivity. The presence of
the surface current leads to a discontinuity in the normal
derivative ofH i, hence a discontinuity in the normal deriva-
tive of Ei, at the boundary of a conducting surface. These
boundary conditions are quite different from the dielectric
case where the fields and their derivatives are assumed con-
tinuous.

These boundary conditions are applicable when the skin
depth of the electromagnetic field is much smaller that the
characteristic wavelength of the field. The wavelengths that
contribute most to the Casimir force correspond to wave vec-
tor k<1/4a, independent of frequency,by numerical deter-
mination. Whenk,Î2/d, the boundary conditions are appli-
cable. This is well satisfied over the entire frequency range
of the finite temperature effect for the conditions of the ex-
periment [2]; when v.1011 s−1 in which cased,0.7mm
and the relationship, fora=1 mm

1

4a
= 2.53 103 ,

Î2

d
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at the lowest frequency of interest. In this frequency range,
specifying thek vector in the material as a boundary condi-
tion is not warranted.

FIG. 1. The net finite-temperature contribution to the Casimir
force is determined byF=s" /p2c3de0

`Fvdv and is attractive when
F.0. (a) The two curves represent theC1 path for perfectly con-
ducting plates(dashed curve) and for plates with permittivity given
by Eq. (4) (solid curve). The net force force for the latter is 0.95
times the perfectly conducting case.(b) For a perfect conductor, the
C2 integral is zero. The net contribution from theC2 path is −169
times the perfectly conducting contribution from theC1 path, and
its addition to the TE mode zero-point contribution reduces the net
TE mode force to nearly zero, which is the result obtained in Ref.
[1]. All are for a=1 mm,T=300 K.
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This can also be understood by noting that the propaga-
tion of electromagnetic fields in a conductive material is de-
scribed by the diffusion equation. If we imaging a spatially
periodic varying field on the surface of the material as
expsikzd, the variations propagate into the material, damped
exponentially as expf−Îk2+2/d 2zg into the material, where
Î2/d is interpreted as the diffusion length. We therefore see
that over the frequency range of interest, the conducting
boundary conditions are appropriate. In this limit, the dis-
placement current is small compared to the real current,j
=sE, for good conductors of interest here.

IV. ELECTROMAGNETIC MODES BETWEEN
METALLIC PLATES

We are interested in modes between two conducting
plates separated by a distancea. In the limit that the plates
are thin films of thicknessd, the skin depth, we can assume
that the plates are infinitely thick and the problem is consid-
erably simplified. This is valid for the experiment[2] where
the Cu/Au metallic film was 1µm. Essentially all of the TE
mode thermal correction comes in the 1011 and 1013 s−1

range as shown in Fig. 1, so 0.07,d,0.7mm.
Taking theẑ axis as perpendicular to the plates, and the

mode propagation direction alongx̂, for the case of TE
modes(also referred to asH or magnetic modes), Ex=0. The
plates’ surfaces are located atz=0 andz=a. For a perfect
conductor,]Hz/]z=0 at the conducting surfaces. A finite
conductivity makes this derivative nonzero, and can be esti-
mated from the small electric fieldEy that exists at the sur-
face of the plate[see Ref.[19], Sec. 8.1 and Eq.(8.6)],

EW i = ŷEy =Î v

8ps
s1 − idn̂ 3 HW i, s7d

whereHW i= x̂Hx and it is assumed that the displacement cur-
rent in the metal plate can be neglectedss@vd, and that the
inverse of the mode wave number is less thand. Ey andHx

are related through Maxwell’s equation¹W 3HW =]EW /c] t. As-
suming a time dependence ofe−ivt, and vacuum between the
plates,

] Hx
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where ± indicates sign ofn̂ at z=0 andz=a, respectively.
The boundary conditions at the surfaces are thus

]
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Solutions of the form Hxszd=AeKz+Be−Kz, where K2

=k2−v2/c2 and k is the transverse wave number, can be
constructed for the space between the conducting plates. The
eigenvaluesK can be determined by the requirement that Eq.
(8) be satisfied atz=0 andz=a. With the usual substitution
v= ij, the eigenvaluesK are then given by(see Ref.[20],
Sec. 7.2)

GTEsjd ;
sa + Kd2

sa − Kd2e2Ka − 1 = 0 s10d

and the force can be calculated by the techniques outlined in
Ref. [20], Sec. 7.3.

This result can be recast in the notation of the Lifshitz
formalism, and the spectrum of the thermal correction can be
calculated as before. Noting thatK= ivp/c,

Fv = v3gsvdE
C

p2dpS sa + ivp/cd2

sa − ivp/cd2e−2ivp/c − 1D−1

. s11d

Results of a numerical integration are shown in Fig. 2, where
it can be seen by comparison with Fig. 1 that the metallic
plate boundary condition does not show a significant contri-
bution from theC2 integral of the TE mode thermal correc-
tion and is therefore similar to that for the “perfect conduc-
tor” boundary condition. This reconciles the discrepancy
between the prediction in Ref.[1] and the experimental re-
sults reported in Ref.[2]. Note that the function Eq.(10) is
only applicable where the skin depth is small compared to
the mode wavelength. Our result is in agreement, in its range
of applicability, with the analysis presented in Ref.[11]
which is valid for all frequencies. In this Brief Report, we
essentially determined the surface impedance from the bulk
properties, which is possible over the frequency range of
interest.

V. CONCLUSION

The problem of calculating the TE mode contribution to
the Casimir force has been previously treated with the
“Schwinger prescription”[21] of setting the dielectric con-
stant to infinity before settingv=0. This prescription has

FIG. 2. Numerical results forFv using the finite conductivity
boundary conditions. The integrated force for theC2 path contribu-
tion is 1.47 times greater than theC1 integration, and the total net
force for both paths is 1.75 times greater than the perfectly conduct-
ing case. Treatment of the plates as conducting metals fails above
v=1014 s−1. All are for a=1 mm,T=300 K.
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become controversial[22], a term that can be used to de-
scribe the entire history of the theory of the temperature cor-
rection. However, there is no doubt that the issues brought up
in Ref. [1] are important.

The purpose of our calculation is to take a different ap-
proach and to study the low-frequency behavior of the cor-
rection in order to understand its character. We have shown
that the finite temperature correction in Ref.[1] is a low-
frequency phenomenon. The frequency is sufficiently low so
that treating the plates as bulk dielectrics is not valid. By use
of a more realistic description of the field interaction with the
plates we show that the modes between metallic plates of
finite conductivity produce a finite temperature correction in
close agreement with the perfectly conducting case. The
principal difference between our result and the previous
work is that we have allowed for the possibility that the
derivatives of the fields at the conducting boundary are dis-
continuous. This possibility exists because the fields produce
currents in the conducting plates that are discontinuous
across the boundary between the vacuum and the conductor.
Although it is tempting to model the finite conductivity as a
modification to the dielectric permittivity, such a model fails
when the mean free path of the conduction electrons exceeds
the penetration depth of the electromagnetic field, and thus
fails for frequencies of interest for the thermal correction to
the TE electromagnetic mode.

We have shown that the conducting boundary conditions
that are applicable for frequencies where the TE mode ther-
mal correction has its significant contribution lead to a net
increase of the TE mode force, and is of the same magnitude
as the perfectly conducting case. This result is in agreement
with the experimental results reported in Ref.[2]. However,
additional and improved experiments with large plate sepa-
rations(greater than 2µm) with both conducting and dielec-
tric plates would provide the definitive test. A particularly
tempting dielectric would be diamond which offers both the-
oretical and experimental benefits: its dielectric properties
can be calculated from first principles, and stray surface
charges can be eliminated by exposing it to ultraviolet light,
making it photoconductive. A semiconductor such as lightly
doped germanium would also provide a useful test of this
theory. Ge with resistivity 40V cm is readily available and
would have a skin depth about 1000 times that of Cu or Au.
Additional high-accuracy measurements at long range with
Au or Cu are also important for testing the theory. We are
presently constructing a different torsion pendulum system
that will be able to measure the Casimir force with 1% ac-
curacy at distances greater than 2µm, at a fixed temperature
of 300 K. We hope that this Brief Report will spur further
theoretical work on the questions and basic analysis pre-
sented here.
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