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Low-frequency character of the Casimir force between metallic films
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The frequency spectrum of the finite temperature correction to the Casimir force can be determined by use
of the Lifshitz formalism for metallic plates of finite conductivity. We show that the correction for the TE
electromagnetic modes is dominated by frequencies so low that the plates cannot be modeled as ideal dielec-
trics. We also address issues relating to the behavior of electromagnetic fields at the surfaces and within
metallic conductors, and calculate the surface modes using appropriate low-frequency metallic boundary con-
ditions. Our result brings the thermal correction into agreement with experimental results that were previously
obtained. We suggest a series of measurements that will test the veracity of our analysis.
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I. INTRODUCTION face by use of ultraviolet light. The ultimate purposes of this
A recent papef1], in which finite conductivity and tem- note are to call for further theoretical studies and experimen-

perature corrections to the Casimir force between metd@l measurements as suggested here.
plates are simulatenously considered, suggests a large ther-
mal correction to the force at distances greater than about 1
um. This correction deviates significantly from experimental
results[2,3] and previous theoretical work, and has attracted

considerable interest. The principal conclusion in Ré. Following Ford[13], the spectrum of the Casimir force is

leading to this discrepancy is that the TE eIectromagnetit@i\,en by Eqs(2.3) and(2.4) of Lifshitz’ seminal papef14].
mode (E parallel to the surfagedoes not contribute to the \ye note that

force at finite temperature. Arguments against the analysis

given in Ref.[1] have been numerouyg-7] but the argu- 1 ho 1 1 1

ments have not been universally accepi@@). peothy +=5+ expfiolkT) -1 2 *olw) (D)

A careful numerical analysis of the problem leads us and . ] .
others to conclude that the results presented in Réfare ~ a@nd we only include the second term on the right-hand side
mathematically correct. As we show here, this analysis doel the determination of the spectrum of the thermal correc-
not accurately represent the experimental arrangement us&@n- From Eq.(2.4) of Ref. [14], the spectrum of the TE
in Ref. [2]. The aspect of the problem that has not beerMode excitation between parallel plates can be described by
considered in detail is the appropriateness of a dielectric A 7
model of the metallic plates at low frequencies, which, as we (—3)Fw = (—S)aﬁg(w)ReJ p’dp
will show, is most relevant for the thermal correction. The ' e c
first purpose of this Brief Report is to expand on our previ- (s+p)? -1
ous work[10] and to show that the experimental resi#l x(—ze‘z'p‘”a’c— 1) , (2
can be fully explained by this application. (s-p)

Il. SPECTRUM OF THE TE MODE THERMAL
CORRECTION OF THE CASIMIR FORCE

The second purpose of this Brief Report is to contrast the
points of view put forward in Ref§1,11]. Use of the surface s=Ve(w) - 1+p?, 3

impedance to calculate the waveguide modes, as was done ir]q . .
- L . wherea is the plate separation, and we have assumed that the
Ref. [11] allows description of the Casimir force by a single

analytic function in the comple® plane[12]. Treating met- fr:ztris _?rr]ee r;]?gergtfigge z?éniamaéingéwgrgt\ézc?nlg tf)oertween
als as dielectrics, as was done in Rgf], leads to the re- : 9 P P 1

quirement that different boundary conditions must be used 1100, v_vh|ch_descr|bes thE.EﬁeCt. of plane waves,_@gd
. . with pure imaginary valuep=i0 to i for exponentially
when the skin depth of the electromagnetic field is smaller
. - damped(evanescentwaves.
than the electron mean free path in the metal. Therefore, wit In anticioation that the effect is a low-frequency phenom
the dielectric treatment, the Casimir force cannot be de- P q yp

scribed by a single analytic function so the techniques usegggn’evr;e Il(J)se ttr?: p:(arr:mm;tse_r;r(f)cr)]ri Aurérllag)eggotrolmdgfeﬁn ine
in Ref. [1] are not applicable to the problem. ploy 9

_ . : 41
Finally, we suggest that the analysis in REf] is appli- Ree=¢,. We find for frequencieso<10's™ that, to good

cable to insulating dielectrics, and possibly to materials Sucﬁipproxmanon,

as intrinsic or lightly doped Ge or Si where the skin depth is -1.48x%x 10¢ 1.8x 108

longer than the electron mean free path. Measurements with €1= m: €= m (4)
a dielectric such as diamond would provide an excellent test 0 0

of the theory and allow the possibility to discharge the surwith wy=3.3x 103s™,
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15 . : , o=cl\2muow, (5)

whereo is the conductivity angk is the permeabilityfor Au
and Cu,oc=~3x10"s™, u=1), becomes of the same order
as the mean free path of the conduction electrons, it is no
longer possible to describe the field in terms of a dielectric
permeability[12,15. This occurs for optical frequencies
10" ~5x 10'3s™* for metals such as Au and Cu where the mean
“ ol free path, at 300 K, is about>3107° cm (Ref.[16], p. 259.
0 : - - At frequencies above 1bs™ the permeability description
-2t b 1 again becomes valid because on absorbing a photon, a con-
al _ duction electron acquires a large kinetic energy and has a
shortened mean free path. However, in the interaction of a
field with a material surfaces andH can always be related
-8r ] linearly through the surface impedan@ehich relates the
1oL '5 - : electric field at the surface to a surface current and hence a
10 ol magnetic fielg this approach has been used in calculation of
the Casimir forcg11]. A related correction arises from the
FIG. 1. The net finite-temperature contribution to the Casimirthe plasmon interaction with the surface which becomes sig-
force is determined by =(%/7%c3) [{F ,dw and is attractive when nificant near the plasma frequency of the metal, and has been
F>0. (& The two curves represent @& path for perfectly con-  estimated as nearly 10947] for subum plate separations.
ducting plategdashed curveand for plates with permittivity given The proper boundary conditions for a conducting plane
by Eq. (4) (solid curve. The net force force for the latter is 0.95 have been discussed by Boyés]. He points out that when
times the perfectly conducting cagb) For a perfect conductor, the (using here the notation of Refl]) w< 772p/477, wherep is
C, integral is zero. The net contribution from tk path is =169 the resistivity andy is the dissipation, the usual dielectric
times the perfectly conducting contribution from tle path, and boundary conditions are not applicable. For Au, using the
its addition to the TE mode zero-point contribution reduces the nebarameters in Ref], this limit is met foro<4x 1044572,
TE mode force to nearly zero, which is the result obtained in Ref'This corresponds to an optical wavelength ofif, which
[1)- All are for a=1 um, T=300 K. implies that for plate separations significantly larger than
this, and of course fow— 0, the plates must be treated as
In Ref. [1], a net deviation from the zero-temperature good conductors.
value of the Casimir force is predicted to be about 25% for a The boundary conditions for a Conducting surface are dis-
plate separation of tm at 300 K. The experimental results cuyssed in Ref[19] (Sec. 8.1 At low frequencies(e.g.,
reported in Ref[2] had their greatest sensitivity around 1 where the disp|acement current can be neg|9c@dbngen_
um, and disagree significantly with the results in H&{. As  tjal electric field at the surface of a conductor will induce a
a comparison, we numerically integrate E(®) for a  currentj,=¢E,, whereo is the conductivity. The presence of
=1pum andT=300K, using Eq(4) for the permittivity. The  the surface current leads to a discontinuity in the normal
results are shown in Fig. 1, where we have separated thgerivative ofH,, hence a discontinuity in the normal deriva-
results from the two integration paths. In Figajlit can be  tive of E,, at the boundary of a conducting surface. These
seen that there is no significant deviation from the perfectlyhoundary conditions are quite different from the dielectric
conducting case. On the other hand, the contribution frongase where the fields and their derivatives are assumed con-
evanescent waves, shown in Figbyl is large and the inte- tinuous.
grated value is in good agreement with the result given in These boundary conditions are applicable when the skin
Ref. [1]. depth of the electromagnetic field is much smaller that the
We see immediately that the main contributions of thecharacteristic wavelength of the field. The wavelengths that
TE-mode finite conductivity correction are around  contribute most to the Casimir force correspond to wave vec-
=10'-10"s™". This behavior is due to an approximately tor k=~ 1/4a, independent of frequencigy numerical deter-
quadratic increase with of the C, integral and a suppres- mjination. Wherk< y2/4, the boundary conditions are appli-
sion beginning ato=kT/A=4x 10"s™" due tog(w). Thisis  cable. This is well satisfied over the entire frequency range
a low-frequency range and we can question certain assumps the finite temperature effect for the conditions of the ex-
tions in Ref.[1] and in the Lifshitz calculation, among oth- periment[2]; when w>10"s! in which cased<0.7 um
ers, in regard to theoretical predictions relevant to the experiand the relationship, foa=1 um
mental arrangement in Rdi2].

F 57
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F, s

8} 4

1 2
— 225X 1P < -<=14x 10fcm? (6)
I1l. LOW-FREQUENCY LIMIT AND FIELD BEHAVIOR IN 4a )

METALLIC MATERIALS . .
at the lowest frequency of interest. In this frequency range,

When the depth of penetration of the electromagnetic fieldpecifying thek vector in the material as a boundary condi-
into a metal, tion is not warranted.
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This can also be understood by noting that the propaga: ,;x10
tion of electromagnetic fields in a conductive material is de- a
scribed by the diffusion equation. If we imaging a spatially 1or
periodic varying field on the surface of the material as <,

exp(ikz), the variations propagate into the material, damped L

exponentially as exp\k*+2/6°Z] into the material, where 0
v2/8is interpreted as the diffusion length. We therefore see " , , ,
that over the frequency range of interest, the conducting  1° 10° N 10" 10"
boundary conditions are appropriate. In this limit, the dis- 1 o
placement current is small compared to the real curient, 25 ' ' '
=¢E, for good conductors of interest here. 2r b
- 1.5
IV. ELECTROMAGNETIC MODES BETWEEN fe T

METALLIC PLATES °'Z"
We are interested in modes between two conducting -os ' '10 '

plates separated by a distareeln the limit that the plates ! o]

are thin films of thicknes$, the skin depth, we can assume

that the plates are infinitely thick and the problem is consid- FIG. 2. Numerical results foF, using the finite conductivity

erably simplified. This is valid for the experimef#f] where  boundary conditions. The integrated force for @gepath contribu-

the Cu/Au metallic film was im. Essentially all of the TE tion is 1.47 times greater than ti@ integration, and the total net

mode thermal correction comes in theli@nd 163s?! force for both paths is 1.75 times greater than the perfectly conduct-

range as shown in Fig. 1, so 0.88<0.7 um. ing case. Treatment of the plates as conducting metals fails above
Taking the? axis as perpendicular to the plates, and thew=10"*s™. All are fora=1 um,T=300 K.

mode propagation direction alongy for the case of TE

modes(also referred to akl or magnetic modesE,=0. The a+K)?

plates’ surfaces are located #0 andz=a. For a perfect Gre(é) = Ea— K;ZGZKa‘ 1=0 (10)

conductor, 9H,/9z=0 at the conducting surfaces. A finite

conductivity makes this derivative nonzero, and can be estiand the force can be calculated by the techniques outlined in

mated from the small electric fielf, that exists at the sur- Ref.[20], Sec. 7.3.

face of the platdsee Ref[19], Sec. 8.1 and Eq8.6)], This result can be recast in the notation of the Lifshitz

formalism, and the spectrum of the thermal correction can be

calculated as before. Noting tht=iwp/c,

15

- n w A -
EH :yEy: %(1 —|)n X H”, (7) ( i / )2
a+iwplc

-1
(a—iwp/c)Ze_Zpr/C_l) . (1

A Fo= 0’g(w) f pzdp(
whereH,;=%H, and it is assumed that the displacement cur- ¢

rent in the metal plate can be neglected> ), and that the  Results of a numerical integration are shown in Fig. 2, where
inverse of the mode wave number is less tl#a, andH, it can be seen by comparison with Fig. 1 that the metallic
are related through Maxwell’s equatidhx H=gE/cat. As-  plate boundary condition does not show a significant contri-
suming a time dependence ®f“!, and vacuum between the bution from theC, integral of the TE mode thermal correc-

plates, tion and is therefore similar to that for the “perfect conduc-
tor” boundary condition. This reconciles the discrepancy
dH, iw between the prediction in Refl] and the experimental re-
97 =< FEV’ (8) sults reported in Refl2]. Note that the function Eq10) is

only applicable where the skin depth is small compared to
where + indicates Sign ofi at z=0 andz=a, respective|y_ the mode Wavelength. Our resultis in agreement, in its range

The boundary conditions at the surfaces are thus of applicability, with the analysis presented in R¢L1]
which is valid for all frequencies. In this Brief Report, we
9 o [ essentially determined the surface impedance from the bulk
—Hy= ii\/—(—)( —i)Hy= £ aH,. (9 properties, which is possible over the frequency range of
Iz 8wl c interest.

Solutions of the form Hy(z)=Ae*+Be™?, where K?

=k?-w?/c? and k is the transverse wave number, can be V. CONCLUSION

constructed for the space between the conducting plates. The

eigenvalueK can be determined by the requirement that Eq. The problem of calculating the TE mode contribution to
(8) be satisfied az=0 andz=a. With the usual substitution the Casimir force has been previously treated with the
w=i¢, the eigenvalueX are then given bysee Ref.[20], “Schwinger prescription[21] of setting the dielectric con-
Sec. 7.2 stant to infinity before settingp=0. This prescription has
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become controversigl?], a term that can be used to de- We have shown that the conducting boundary conditions
scribe the entire history of the theory of the temperature corthat are applicable for frequencies where the TE mode ther-
rection. However, there is no doubt that the issues brought ugal correction has its significant contribution lead to a net
in Ref. [1] are important. o ) increase of the TE mode force, and is of the same magnitude
The purpose of our calculation is to take a different ap-,q the perfectly conducting case. This result is in agreement
proach and to study the low-frequency behavior of the cor-

rection in order to understand its character. We have show\r/1vIth the experimental results reported in Rg]. However,

that the finite temperature correction in Réf] is a low- ad(jitional and improved e>'<periments with 'Iarge plat.e sepa-
frequency phenomenon. The frequency is sufficiently low sdations(greater than 2m) with both conducting and dielec-
that treating the plates as bulk dielectrics is not valid. By usdf¢ plates would provide the definitive test. A particularly
of a more realistic description of the field interaction with the tempting dielectric would be diamond which offers both the-
plates we show that the modes between metallic plates giretical and experimental benefits: its dielectric properties
finite conductivity produce a finite temperature correction incan be calculated from first principles, and stray surface
close agreement with the perfectly conducting case. Theharges can be eliminated by exposing it to ultraviolet light,
principal difference between our result and the previousnaking it photoconductive. A semiconductor such as lightly
work is that we have allowed for the possibility that the doped germanium would also provide a useful test of this
derivatives of the fields at the conducting boundary are distheory. Ge with resistivity 40) cm is readily available and
continuous. This possibility exists because the fields produceould have a skin depth about 1000 times that of Cu or Au.
currents in the conducting plates that are discontinuouddditional high-accuracy measurements at long range with
across the boundary between the vacuum and the conductéw or Cu are also important for testing the theory. We are
Although it is tempting to model the finite conductivity as a presently constructing a different torsion pendulum system
modification to the dielectric permittivity, such a model fails that will be able to measure the Casimir force with 1% ac-
when the mean free path of the conduction electrons exceedsiracy at distances greater thaprg, at a fixed temperature
the penetration depth of the electromagnetic field, and thusf 300 K. We hope that this Brief Report will spur further
fails for frequencies of interest for the thermal correction totheoretical work on the questions and basic analysis pre-
the TE electromagnetic mode. sented here.
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